A note on Besov regularity of layer potentials and solutions of elliptic PDE’s
نویسنده
چکیده
Let L be a second order, (variable coefficient) elliptic differential operator and let u ∈ Bp,p α (Ω), 1 < p < ∞, α > 0, satisfy Lu = 0 in the Lipschitz domain Ω. We show that u can exhibit more regularity on Besov scales for which smoothness is measured in Lτ with τ < p. Similar results are valid for functions representable in terms of layer potentials.
منابع مشابه
Besov Regularity for Elliptic Boundary Value Problems
This paper studies the regularity of solutions to boundary value problems for Laplace's equation on Lipschitz domains in R d and its relationship with adaptive and other nonlinear methods for approximating these solutions. The smoothness spaces which determine the eeciency of such nonlinear approximation in L p (() are the Besov spaces B (L (()), := (=d + 1=p) ?1. Thus, the regularity of the so...
متن کاملNotes on Elliptic Boundary Value Problems for the Laplace Operator
In these notes we present the pseudodifferential approach to elliptic boundary value problems for the Laplace operator acting on functions on a smoothly bounded compact domain in a compact manifold. This is an elaboration of the classical method of multiple layer potentials. After a short discussion of this method we consider the theory of homogeneous distributions on R. This is useful in our s...
متن کاملLayer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces
This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted L classes. We establish: (1) Mapping properties for the double and single layer potentials, as well as the Newton potential; (2) Extrapolation-type solvability results: the fact that solv...
متن کاملNonlinear Approximation and Adaptive Techniques for Solving Elliptic Operator Equations
This survey article is concerned with two basic approximation concepts and their interrelation with the numerical solution of elliptic operator equations, namely nonlinear and adaptive approximation. On one hand, for nonlinear approximation based on wavelet expansions the best possible approximation rate, which a function can have for a given number of degrees of freedom, is characterized in te...
متن کاملNonlinear Approximation Rates and Besov Regularity for Elliptic PDEs on Polyhedral Domains
We investigate the Besov regularity for solutions of elliptic PDEs. This is based on regularity results in Babuska-Kondratiev spaces. Following the argument of Dahlke and DeVore, we first prove an embedding of these spaces into the scale B τ,τ (D) of Besov spaces with 1 τ = r d + 1 p . This scale is known to be closely related to n-term approximation w.r.to wavelet systems, and also adaptive Fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001